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Abstract—Maximum power point tracking (MPPT) has been
a recurring topic research in photovoltaics (PV) optimization
as it can maximize the amount of power produced by these
technologies. However, these methods can not rise their maximum
power point (MPP) level as it drops under nonuniform irradiance
by different causes. The diffusion charge redistribution (DCR)
strategy raises the MPP of mismatched PV systems while not
affecting their convex characteristics curves. This simplifies
MPPT methods such as artificial neural networks (ANNs) used
to predict an MPP related output. Here, the DCR strategy is
explored in an on-chip system using a ladder structure together
with an ANN for MPPT to elevate the power processed by PVs.

Index Terms—diffusion charge redistribution, photovoltaics
optimization, maximum power point tracking, artificial neural
networks

I. INTRODUCTION

As the presence of photovoltaic (PV) grows stronger due
to its clean and renewable energy source, maximum power
point tracking (MPPT) methods becomes a relevant research
topic in PVs optimization as shown in [1]–[3]. However, the
development of techniques that can raise the maximum power
point (MPP) of PVs is also necessary to still extract a great
amount of energy under mismatch conditions.

Mismatch drops the MPP level of PVs in a series circuit
(designated string) to a minimum as their output current
is limited by their weakest component. Because it occurs
when the installations are under nonuniform irradiance [4], it
becomes a big problem where shading is unpredictable, mostly
in urban areas and in dry regions where the accumulation
of dust tends to be inevitable [5]. This can jeopardize the
performance of applications that use solar harvesting such as
wireless sensor networks (WSNs).

A common way of counter mismatch in PV modules has
been the use of bypass diodes. They are associated in parallel
with the cells and so create an additional path for the module’s
current. This method raises the MPP level with the trade-off of
creating nonconvex characteristic curves [6], [7] thus troubling
MPPT methods as there are local maximas.

The recent diffusion charge redistribution (DCR) strategy
[8] shows that it can appreciably raise the MPP level
of mismatched PVs while maintaining their default convex
characteristics. It can be easily integrated on-chip which makes
it a powerful method for recent applications, e.g. internet of

things (IoT), where integrated renewable power solutions are
becoming desirable [9].

In this paper, we explore the DCR strategy together with an
artificial neural network (ANN) based MPP prediction method.
ANNs have been used to predict an MPP related output
given the PV’s characteristics or parameters [10]. Once this
prediction is done, the system can be induced to operate in its
MPP by hardware means. As DCR does not affect the convex
characteristics of PVs, the use of an ANN for MPPT demands
low level of complexity. Therefore, its implementation does
not jeopardize the power efficiency and area of the solution
on-chip.

Section II presents the modelling of the PV cell used in
this study. Section III discusses a ladder DCR structure and
presents its behaviour in Cadence simulation environment.
Section IV shows the ANN that can be used to find the MPP
of the proposed DCR structure. Section V concludes this work
and proposes possible future ones in this matter.

II. PV CELL MODEL

The five-parameter single diode PV cell modelling as
proposed in [11] is used in this work. It characterizes the PV
cell by its photovoltaic current IL, its diode’s saturation current
ID, its internal ohmic resistances Rsh and Rs and the diode’s
ideality factor N . Using the experimental data of the PV cell
presented in [8], the five-model parameters were extracted as
shown in Table I. They belong to a monocrystalline P-Maxx-
2500 mA solar cell with 1.5 A short circuit current (ISC),
a 0.52 V open circuit voltage (VOC), a 1.25 A MPP current
(Imp) and a 0.42 V MPP voltage (Vmp).

To apply DCR, the diffusion capacitance Cd is included
in the PV cell model. This additional parameter, modelled in
Verilog language, shows a dependency on the cell’s ID [8]
and its value is given by (1) as follows:

Cd = 4.64µF + 9.06

(
µF

A

)
· ID (1)

The final PV cell model is shown in Fig. 1.

III. LADDER DCR STRUCTURE

The DCR strategy optimizes the efficiency of PV circuits
by redistributing charge between its components through their



TABLE I
PV CELL PARAMETERS

Parameter Value Unit

IL 1.526 A
ID 22.143 fA
Rsh 2.257 Ω
Rs 0.039 Ω
N 0.630 –

own cell’s diffusion capacitances. Fig. 2 shows a m : n
ladder PV string, m and n being the number of cells
with odd and even assigned designators, respectively, able
to change its structure by switching phases ϕ1 and ϕ2.
This makes the cells appear in pseudo-parallel and mitigates
string’s mismatch losses. The technique does not require
external storage components and eases its implementation in
an integrated circuit.

The proposed switching process inserts losses in the DCR
strategy, as shown in [8]’s switched capacitor conversion loss
analysis adapted from [12]:

ILSSL =
1

12
· m− 1

m
· 1

fsw
· 1

Vmp
· Imp

Cd
(2)

ILFSL =
4

2m− 1
· m− 1

m
· Imp

Vmp
· Reff (3)

ILTOTAL
∼=
√

(ILSSL)2 + (ILFSL)2 (4)

where fsw is the switching frequency, Reff is the switch’s
effective on-resistance, ILSSL and ILFSL are the slow-
switching and fast-switching limit losses related, respectively,
and ILTOTAL is the total loss of the switching process. This
shows that the total loss of the structure used in this work
is a small amount of 0.12% considering maximum uniform
illumination and a Reff of 1mΩ.

The 3 : 2 ladder DCR string was simulated in Cadence
Virtuoso Analog Design Environment with a duty cycle of
50% and a switching frequency of 50 kHz. Fig. 3 shows the
schematic of the circuit used in the simulations. A transient
simulation of 100 µs was performed and the system output
voltage (VOUT ) and load current (Iload) were measured so
only the steady-state of the aforementioned signals would be
used to compute the results shown next (which means after
60 ns, as shown in Fig. 4).
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Fig. 1. PV cell model.
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Fig. 2. A PV m : n ladder string using DCR strategy.
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Fig. 3. Schematic of the 3 : 2 ladder DCR string used for simulation in
Cadence environment: clk 1 and clk 2 are the switches’ control signals.

The evident advantage of DCR can be seen in the
simulations results shown in Fig. 5, where the performance
of a PV 5-cell string, its commercial approach using bypass
diodes and the 3 : 2 ladder DCR string are compared.
The DCR provides near 60% more output power than
its commercial counterpart. Fig. 5 also confirms that the
characteristics of the DCR structure are still convex under
mismatch, reinforced by the different shading conditions
applied to this configuration (Fig. 6). Fig. 7 shows the
maximum output power (Pmp) of the bypassed 5-cell and the
3 : 2 ladder DCR strings under different shading conditions
for the clarification of the DCR strategy optimization.
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Fig. 4. Transient voltage for different values of load current. The signal is
steady-state after 60 µs.
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Fig. 5. Simulation results of the 5-cell string (red solid line), the diode
bypassed 5-cell string (green solid line) and the 3 : 2 ladder DCR string
(blue solid line) under same shading condition (2 shaded cells; 1 cell 25%
shaded, 1 cell 75% shaded). The 5-cell string without shading condition (black
solid line) is plotted for power loss comparison.
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Fig. 6. Simulation results of the 3 : 2 ladder DCR string under different
shading conditions: 1 cell 100% shaded (two-dashed line), 1 cell 20% shaded
and 1 cell 80% shaded (solid line), 1 cell 100% shaded and 1 cell 40% shaded
(dot-dashed line) and 2 cells 20% shaded and 1 cell 60% shaded (dashed line).
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Fig. 7. Simulation results of the bypassed 5-cell string (green line) and the
3 : 2 ladder DCR string (blue line) under different shading conditions: 1
shaded cell (solid line), 3 shaded cells (dashed line) and 5 shaded cells (dotted
line).

IV. ANN BASED MPP PREDICTION METHOD

ANNs are commonly applied to regression problems for
their ability in predicting outputs given their inputs [13].
They can be represented as a three layer weighted directed
acyclic graph where the first layer holds its inputs, the
second layer holds its processing units (the neurons, which are
activated through mathematical functions) and the third layer
holds its calculated outputs. In learning process, the structure
links’ weights are repeatedly adjusted so it develops a good
prediction power; when this process is over, this structure is
responsible for generating right outputs.

The ANN proposed here has a (2, 3) ANN configuration
(that is, two neurons in the first sub-processing layer and
three neurons in the last sub-processing layer) as pictured in
Fig. 8. It requires three I − V points as inputs to predict the
system’s Imp and uses resilient backpropagation with weight
backtracking [14], softplus [15] as the neurons’ activation
function and sum of squared errors as the ANN’s cost function.
The three operating points are chosen so they fit different
curves (Fig. 9) and the ANN has an accuracy of 99.51%.
Although [16] shows that a higher number of operating points
as inputs elevate the ANN precision, it deals with nonconvex
characteristic curves. When using DCR, the sampling process
can be reduced while keeping significant accuracy, as shown
through the ANN proposed here. Fig. 10 shows the mapping
of the actual and this configuration’s estimated Imp values.

The ANN was generated through R’s neuralnet package
[17]. The training and test sets were composed of 70% and
30% of a 290 different 3 : 2 ladder DCR string simulated
curves base, respectively.

The proposed solution can be further explored by adding the
PV’s temperature T as an input to the ANN. This parameter
shows good results in ANNs used for MPPT in standard PV
structures [18], [19].

V. CONCLUSION

This work explores an integrated solution of DCR together
with an ANN based MPP prediction method.

Processing	layer
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Fig. 8. Proposed ANN structure. The PV’s temperature T is an additional
and possible input.
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Fig. 9. Proposed ANN’s I − V points sampling applied to the 3 : 2 ladder
DCR string under different shading conditions.
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Fig. 10. Proposed ANN prediction power.

The simulations of a 3 : 2 ladder string using DCR shows
that the strategy can raise the MPP of mismatched PVs by near
60% without affecting their default convex characteristics.

The MPP prediction method proposed for this structure is
ANN based and can predict the 3 : 2 ladder DCR string’s Imp

using only three of its operating points as inputs. This reduces
the sampling time of the MPPT process, which can show
a better performance since it adjusts its system’s operating
point in real time. The solution has an accuracy of 99.51%
and a (2, 3) configuration. This ANN can be implemented
in Verilog/VHDL for on-chip integration together with the
switches and drivers of the DCR strategy, being suitable for
PV applications such as IoT.

DCR can be further explored by studying different ladder
configurations and different MPPT methods that could better
fit it.
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